1.13¶
; Prove that Fib(n) is the closest integer to ; (φ^n)/√5, where φ = (1 + √5)/2 ; Hint: Let ψ = (1 − √5)/2 ; Use induction and the definition of the Fibonacci numbers ; to prove that Fib(n) = (φ^n − ψ^n )/√5 (define phi (/ (+ 1 (sqrt 5)) 2)) (define (f n) (/ (expt phi n) (sqrt 5))) (f 0) (f 1) (f 2) (f 3) (f 4) (f 5) (f 6) ; Proof by Induction method: ; http://www.billthelizard.com/2009/12/sicp-exercise-113-fibonacci-and-golden.html