1.28
; One variant of the Fermat test that cannot be fooled
; is called the Miller-Rabin test (Miller 1976; Rabin 1980).
; This starts from an alternate form of Fermat’s Little Theorem,
; which states that if n is a prime number and a is any positive
; integer less than n,then a raised to the (n−1)-st power is
; congruent to 1 modulo n. To test the primality of a number n by
; the Miller-Rabin test, we pick a random number a < n and raise a to
; the (n−1)-st power modulo n using the `expmod` procedure. However,
; whenever we perform the squaring step in expmod, we check to see
; if we have discovered a “nontrivial square root of 1 modulo n,” that
; is, a number not equal to 1 or n − 1 whose square is equal to 1 modulo n.
; It is possible to prove that if such a nontrivial square root of 1 exists,
; then n is not prime. It is also possible to prove that if n is an odd
; number that is not prime, then, for at least half the numbers a < n,
; computing a^(n−1) in this way will reveal a nontrivial square root of 1 modulo n.
; This is why the Miller-Rabin test cannot be fooled.) Modify the expmod procedure
; to signal if it discovers a nontrivial square root of 1, and use this to
; implement the Miller-Rabin test with a procedure analogous to fermat-test.
; Check your procedure by testing various known primes and non-primes.
; Hint: One convenient way to make expmod signal is to have it return 0.
(define (even? x) (= (remainder x 2) 0))
(define (expmod base exp m)
(cond ((= exp 0) 1)
((even? exp)
(remainder (square (test-non-trivial (expmod base (/ exp 2) m)
m)) m))
(else (remainder (* base (expmod base (- exp 1) m))
m))))
(define (test-non-trivial x n)
(cond ((and (= (remainder (square x) n) 1)
(not (= x 1))
(not (= x (- n 1))))
0)
(else x)))
(define (miller-rabin-test n)
(define (miller-rabin-test-iter a)
(cond ((= a 0) #t)
((check-num (+ 1 (random (- n 1))))
(miller-rabin-test-iter (- a 1)))
(else #f)))
(define (check-num a)
(= (expmod a (- n 1) n) 1))
(miller-rabin-test-iter 100)
)
; Testing with actual prime numbers
(miller-rabin-test 2) ;Value: #t
(miller-rabin-test 17) ;Value: #t
(miller-rabin-test 19) ;Value: #t
; Testing with Carmichael numbers (should be false)
(miller-rabin-test 561)
(miller-rabin-test 1105)
(miller-rabin-test 1729)
(miller-rabin-test 2465)
(miller-rabin-test 2821)
(miller-rabin-test 6601)