1.39¶
; A continued fraction representation of the tangent ; function was published in 1770 by the German mathematician ; J.H. Lambert: ; tan x = x ; -------------- ; 1 - x^2 ; ---------- ; 3 - x^2 ; ------- ; 5 - ... ; where x is in radians. Define a procedure (tan-cf x k) ; that computes an approximation to the tangent function ; based on Lambert’s formula. k specifies the number of terms ; to compute, as in Exercise 1.37. (define (cont-frac n d k) (define (iter k res) (if (= k 0) res (iter (- k 1) (/ (n k) (+ (d k) res))))) (iter k 0)) (define (tan-cf x k) (cont-frac (lambda (i) (if (= i 1) x (- (square x)))) (lambda (i) (- (* 2 i) 1)) k)) (tan-cf 0.7853981634 20) ;Value: 1.0000000000051033 (tan(45 deg) = 1)