1.39
; A continued fraction representation of the tangent
; function was published in 1770 by the German mathematician
; J.H. Lambert:
; tan x = x
; --------------
; 1 - x^2
; ----------
; 3 - x^2
; -------
; 5 - ...
; where x is in radians. Define a procedure (tan-cf x k)
; that computes an approximation to the tangent function
; based on Lambert’s formula. k specifies the number of terms
; to compute, as in Exercise 1.37.
(define (cont-frac n d k)
(define (iter k res)
(if (= k 0)
res
(iter (- k 1)
(/ (n k) (+ (d k) res)))))
(iter k 0))
(define (tan-cf x k)
(cont-frac (lambda (i) (if (= i 1) x (- (square x))))
(lambda (i) (- (* 2 i) 1))
k))
(tan-cf 0.7853981634 20) ;Value: 1.0000000000051033 (tan(45 deg) = 1)