primality
; Straightforward primality testing
; Test divisors b/w 1 to sqrt(n)
; Order of growth = Θ(√n).
(define (divides? a b) (= (remainder b a) 0))
(define (prime? n)
(define (smallest-divisor n) (find-divisor n 2))
(define (find-divisor n test-divisor)
(cond ((> (square test-divisor) n) n)
((divides? test-divisor n) test-divisor)
(else (find-divisor n (+ test-divisor 1)))))
(= n (smallest-divisor n))
)
(prime? 11)
(prime? 19)
(prime? 20)
; Fermat test
; If n is a prime number and a is any positive integer less
; than n, then a raised to the nth power is congruent to a modulo n
(define (even? x) (= (remainder x 2) 0))
(define (expmod base exp m)
(cond ((= exp 0) 1)
((even? exp)
(remainder
(square (expmod base (/ exp 2) m))
m))
(else
(remainder
(* base (expmod base (- exp 1) m))
m))))
(define (fermat-test n)
(define (try-it a)
(= (expmod a n n) a))
(try-it (+ 1 (random (- n 1)))))
(define (fast-prime? n times)
(cond ((= times 0) true)
((fermat-test n) (fast-prime? n (- times 1)))
(else false)))
(fast-prime? 19 10)