primality¶
; Straightforward primality testing ; Test divisors b/w 1 to sqrt(n) ; Order of growth = Θ(√n). (define (divides? a b) (= (remainder b a) 0)) (define (prime? n) (define (smallest-divisor n) (find-divisor n 2)) (define (find-divisor n test-divisor) (cond ((> (square test-divisor) n) n) ((divides? test-divisor n) test-divisor) (else (find-divisor n (+ test-divisor 1))))) (= n (smallest-divisor n)) ) (prime? 11) (prime? 19) (prime? 20) ; Fermat test ; If n is a prime number and a is any positive integer less ; than n, then a raised to the nth power is congruent to a modulo n (define (even? x) (= (remainder x 2) 0)) (define (expmod base exp m) (cond ((= exp 0) 1) ((even? exp) (remainder (square (expmod base (/ exp 2) m)) m)) (else (remainder (* base (expmod base (- exp 1) m)) m)))) (define (fermat-test n) (define (try-it a) (= (expmod a n n) a)) (try-it (+ 1 (random (- n 1))))) (define (fast-prime? n times) (cond ((= times 0) true) ((fermat-test n) (fast-prime? n (- times 1))) (else false))) (fast-prime? 19 10)