Skip to content

2.56

; Show how to extend the basic differentiator to handle more kinds of expressions. 
; For instance, implement the differentiation rule
; d/dx(u^n) = n u^(n-1) d/dx(u)
; by adding a new clause to the deriv program and defining appropriate procedures 
; `exponentiation?`, `base`, `exponent`, and `make-exponentiation`. (You may use 
; the symbol ** to denote exponentiation.) Build in the rules that anything raised 
; to the power 0 is 1 and anything raised to the power 1 is the thing itself.

(define (=number? exp num) (and (number? exp) (= exp num)))

; Define exponent related prodecures
(define (exponentiation? x)
    (and (pair? x) (eq? (car x) '**)))

(define (make-exponent b e)
    (cond ((=number? e 0) 1)
          ((=number? e 1) b)
          ((and (number? b) (number? e)) (expt b e))
          (else (list '** b e))))
(define (base e) (cadr e))
(define (exponent e) (caddr e))

(make-exponent 2 5) ;Value: 32
(make-exponent 'x 0) ;Value: 1
(make-exponent 'y 1) ;y
(make-exponent 'x 'y) ;(** x y)
(make-exponent 2 'x) ;(** 2 x)

; Modify `deriv` to support exponentiation
(define (deriv exp var)
    (cond ((number? exp) 0)
          ((variable? exp) (if (same-variable? exp var) 1 0))
          ((sum? exp) (make-sum (deriv (addend exp) var)
                                (deriv (augend exp) var)))
          ((product? exp)
            (make-sum
                (make-product 
                    (multiplier exp)
                    (deriv (multiplicand exp) var))
                (make-product
                    (deriv (multiplier exp) var)
                    (multiplicand exp))))
          ((exponentiation? exp)
            (make-product
                (exponent exp)
                (make-product
                    (make-exponent 
                        (base exp)
                        (make-sum (exponent exp) -1))
                    (deriv (base exp) var))))
          (else
            (error "unknown expression type: DERIV" exp))))

(define (variable? x) (symbol? x))
(define (same-variable? v1 v2)
    (and (variable? v1) (variable? v2) (eq? v1 v2)))
(define (sum? x) (and (pair? x) (eq? (car x) '+)))
(define (addend s) (cadr s))
(define (augend s) (caddr s))
(define (product? x) (and (pair? x) (eq? (car x) '*)))
(define (multiplier p) (cadr p))
(define (multiplicand p) (caddr p))
(define (make-sum a1 a2) 
    (cond ((=number? a1 0) a2) 
          ((=number? a2 0) a1)
          ((and (number? a1) (number? a2)) (+ a1 a2))
          (else (list '+ a1 a2))))
(define (make-product m1 m2) 
    (cond ((or (=number? m1 0) (=number? m2 0)) 0)
            ((=number? m1 1) m2)
            ((=number? m2 1) m1)
            ((and (number? m1) (number? m2)) (* m1 m2))
            (else (list '* m1 m2))))

(deriv '(** x 3) 'x)
; (* 3 (** x 2))

(deriv '(** x n) 'x)
; (* n (** x (+ n -1)))