2.56
; Show how to extend the basic differentiator to handle more kinds of expressions.
; For instance, implement the differentiation rule
; d/dx(u^n) = n u^(n-1) d/dx(u)
; by adding a new clause to the deriv program and defining appropriate procedures
; `exponentiation?`, `base`, `exponent`, and `make-exponentiation`. (You may use
; the symbol ** to denote exponentiation.) Build in the rules that anything raised
; to the power 0 is 1 and anything raised to the power 1 is the thing itself.
(define (=number? exp num) (and (number? exp) (= exp num)))
; Define exponent related prodecures
(define (exponentiation? x)
(and (pair? x) (eq? (car x) '**)))
(define (make-exponent b e)
(cond ((=number? e 0) 1)
((=number? e 1) b)
((and (number? b) (number? e)) (expt b e))
(else (list '** b e))))
(define (base e) (cadr e))
(define (exponent e) (caddr e))
(make-exponent 2 5) ;Value: 32
(make-exponent 'x 0) ;Value: 1
(make-exponent 'y 1) ;y
(make-exponent 'x 'y) ;(** x y)
(make-exponent 2 'x) ;(** 2 x)
; Modify `deriv` to support exponentiation
(define (deriv exp var)
(cond ((number? exp) 0)
((variable? exp) (if (same-variable? exp var) 1 0))
((sum? exp) (make-sum (deriv (addend exp) var)
(deriv (augend exp) var)))
((product? exp)
(make-sum
(make-product
(multiplier exp)
(deriv (multiplicand exp) var))
(make-product
(deriv (multiplier exp) var)
(multiplicand exp))))
((exponentiation? exp)
(make-product
(exponent exp)
(make-product
(make-exponent
(base exp)
(make-sum (exponent exp) -1))
(deriv (base exp) var))))
(else
(error "unknown expression type: DERIV" exp))))
(define (variable? x) (symbol? x))
(define (same-variable? v1 v2)
(and (variable? v1) (variable? v2) (eq? v1 v2)))
(define (sum? x) (and (pair? x) (eq? (car x) '+)))
(define (addend s) (cadr s))
(define (augend s) (caddr s))
(define (product? x) (and (pair? x) (eq? (car x) '*)))
(define (multiplier p) (cadr p))
(define (multiplicand p) (caddr p))
(define (make-sum a1 a2)
(cond ((=number? a1 0) a2)
((=number? a2 0) a1)
((and (number? a1) (number? a2)) (+ a1 a2))
(else (list '+ a1 a2))))
(define (make-product m1 m2)
(cond ((or (=number? m1 0) (=number? m2 0)) 0)
((=number? m1 1) m2)
((=number? m2 1) m1)
((and (number? m1) (number? m2)) (* m1 m2))
(else (list '* m1 m2))))
(deriv '(** x 3) 'x)
; (* 3 (** x 2))
(deriv '(** x n) 'x)
; (* n (** x (+ n -1)))