2.57
; Extend the differentiation program to handle sums and products of arbitrary
; numbers of (two or more) terms. Then the last example above could be expressed
; as
; (deriv '(* x y (+ x 3)) 'x)
; Try to do this by changing only the representation for sums and products,
; without changing the deriv procedure at all. For example, the addend of a sum
; would be the first term, and the augend would be the sum of the rest of the terms.
; New definitions for `augend` and `multiplcand` are,
; ====================================================
(define (augend s)
(if (null? (cdddr s))
(caddr s)
(make-sum (caddr s) (cadddr s))))
(define (multiplicand p)
(if (null? (cdddr p))
(caddr p)
(make-product (caddr p) (cadddr p))))
; ====================================================
; Testing
(define (variable? x) (symbol? x))
(define (same-variable? v1 v2)
(and (variable? v1) (variable? v2) (eq? v1 v2)))
(define (=number? exp num)
(and (number? exp) (= exp num)))
(define (sum? x) (and (pair? x) (eq? (car x) '+)))
(define (addend s) (cadr s))
(define (make-sum a1 a2)
(cond ((=number? a1 0) a2)
((=number? a2 0) a1)
((and (number? a1) (number? a2)) (+ a1 a2))
(else (list '+ a1 a2))))
(define (product? x) (and (pair? x) (eq? (car x) '*)))
(define (multiplier p) (cadr p))
(define (make-product m1 m2)
(cond ((or (=number? m1 0) (=number? m2 0)) 0)
((=number? m1 1) m2)
((=number? m2 1) m1)
((and (number? m1) (number? m2)) (* m1 m2))
(else (list '* m1 m2))))
(define (deriv exp var)
(cond ((number? exp) 0)
((variable? exp) (if (same-variable? exp var) 1 0))
((sum? exp) (make-sum (deriv (addend exp) var)
(deriv (augend exp) var)))
((product? exp)
(make-sum
(make-product
(multiplier exp)
(deriv (multiplicand exp) var))
(make-product
(deriv (multiplier exp) var)
(multiplicand exp))))
(else
(error "unknown expression type: DERIV" exp))))
(deriv '(* x y (+ x 3)) 'x)
; (+ (* x y) (* y (+ x 3)))
(deriv '(* x y (+ x 3 y)) 'x)
; (+ (* x y) (* y (+ x 3 y)))