sets-tree
; Sets as trees
(define (entry tree) (car tree))
(define (left-branch tree) (cadr tree))
(define (right-branch tree) (caddr tree))
(define (make-tree entry left right)
(list entry left right))
; element-of-set? operation
(define (element-of-set? x set)
(cond ((null? set) #f)
((= x (entry set)) #t)
((< x (entry set))
(element-of-set? x (left-branch set)))
((> x (entry set))
(element-of-set? x (right-branch set)))))
; Testing `element-of-set?`
(define set1 (list 7 (list 3 (list 1 '() '()) (list 5 '() '()))
(list 9 '() (list 11 '() '()))))
(entry set1) ;Value: 7
(left-branch set1) ;(3 (1) (5))
(right-branch set1) ;(9 () (11))
(element-of-set? 7 set1) ;#t
(element-of-set? 1 set1) ;#t
(element-of-set? 11 set1) ;#t
(element-of-set? 12 set1) ;#f
; Adjoin operation
(define (adjoin-set x set)
(cond ((null? set) (make-tree x '() '()))
((= x (entry set)) set)
((< x (entry set))
(make-tree (entry set)
(adjoin-set x (left-branch set))
(right-branch set)))
((> x (entry set))
(make-tree (entry set)
(left-branch set)
(adjoin-set x (right-branch set))))))
; Test adjoin
(adjoin-set 8 set1)
; (7 (3 (1 () ()) (5 () ())) (9 (8 () ()) (11 () ())))